605,154 research outputs found

    Optimization in task--completion networks

    Full text link
    We discuss the collective behavior of a network of individuals that receive, process and forward to each other tasks. Given costs they store those tasks in buffers, choosing optimally the frequency at which to check and process the buffer. The individual optimizing strategy of each node determines the aggregate behavior of the network. We find that, under general assumptions, the whole system exhibits coexistence of equilibria and hysteresis.Comment: 18 pages, 3 figures, submitted to JSTA

    Recent developments in multilevel optimization

    Get PDF
    Recent developments in multilevel optimization are briefly reviewed. The general nature of the multilevel design task, the use of approximations to develop and solve the analysis design task, the structure of the formal multidiscipline optimization problem, a simple cantilevered beam which demonstrates the concepts of multilevel design and the basic mathematical details of the optimization task and the system level are among the topics discussed

    MOON: A Mixed Objective Optimization Network for the Recognition of Facial Attributes

    Full text link
    Attribute recognition, particularly facial, extracts many labels for each image. While some multi-task vision problems can be decomposed into separate tasks and stages, e.g., training independent models for each task, for a growing set of problems joint optimization across all tasks has been shown to improve performance. We show that for deep convolutional neural network (DCNN) facial attribute extraction, multi-task optimization is better. Unfortunately, it can be difficult to apply joint optimization to DCNNs when training data is imbalanced, and re-balancing multi-label data directly is structurally infeasible, since adding/removing data to balance one label will change the sampling of the other labels. This paper addresses the multi-label imbalance problem by introducing a novel mixed objective optimization network (MOON) with a loss function that mixes multiple task objectives with domain adaptive re-weighting of propagated loss. Experiments demonstrate that not only does MOON advance the state of the art in facial attribute recognition, but it also outperforms independently trained DCNNs using the same data. When using facial attributes for the LFW face recognition task, we show that our balanced (domain adapted) network outperforms the unbalanced trained network.Comment: Post-print of manuscript accepted to the European Conference on Computer Vision (ECCV) 2016 http://link.springer.com/chapter/10.1007%2F978-3-319-46454-1_

    Dynamics simulation of human box delivering task

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2018The dynamic optimization of a box delivery motion is a complex task. The key component is to achieve an optimized motion associated with the box weight, delivering speed, and location. This thesis addresses one solution for determining the optimal delivery of a box. The delivering task is divided into five subtasks: lifting, transition step, carrying, transition step, and unloading. Each task is simulated independently with appropriate boundary conditions so that they can be stitched together to render a complete delivering task. Each task is formulated as an optimization problem. The design variables are joint angle profiles. For lifting and carrying task, the objective function is the dynamic effort. The unloading task is a byproduct of the lifting task, but done in reverse, starting with holding the box and ending with it at its final position. In contrast, for transition task, the objective function is the combination of dynamic effort and joint discomfort. The various joint parameters are analyzed consisting of joint torque, joint angles, and ground reactive forces. A viable optimization motion is generated from the simulation results. It is also empirically validated. This research holds significance for professions containing heavy box lifting and delivering tasks and would like to reduce the chance of injury.Chapter 1 Introduction -- Chapter 2 Skeletal Human Modeling -- Chapter 3 Kinematics and Dynamics -- Chapter 4 Lifting Simulation -- Chapter 5 Carrying Simulation -- Chapter 6 Delivering Simulation -- Chapter 7 Conclusion and Future Research -- Reference

    Pareto-Path Multi-Task Multiple Kernel Learning

    Full text link
    A traditional and intuitively appealing Multi-Task Multiple Kernel Learning (MT-MKL) method is to optimize the sum (thus, the average) of objective functions with (partially) shared kernel function, which allows information sharing amongst tasks. We point out that the obtained solution corresponds to a single point on the Pareto Front (PF) of a Multi-Objective Optimization (MOO) problem, which considers the concurrent optimization of all task objectives involved in the Multi-Task Learning (MTL) problem. Motivated by this last observation and arguing that the former approach is heuristic, we propose a novel Support Vector Machine (SVM) MT-MKL framework, that considers an implicitly-defined set of conic combinations of task objectives. We show that solving our framework produces solutions along a path on the aforementioned PF and that it subsumes the optimization of the average of objective functions as a special case. Using algorithms we derived, we demonstrate through a series of experimental results that the framework is capable of achieving better classification performance, when compared to other similar MTL approaches.Comment: Accepted by IEEE Transactions on Neural Networks and Learning System
    • …
    corecore